A Multivariate Model for Analyzing Crime Scene Information

Author:

Fujita Goro1,Watanabe Kazumi1,Yokota Kaeko1,Suzuki Mamoru1,Wachi Taeko1,Otsuka Yusuke1,Kuraishi Hiroki1

Affiliation:

1. National Research Institute of Police Science, Kashiwa-shi, Japan

Abstract

This study examines the validity of a statistical offender profiling technique that predicts the multi-dimensional classification of homicide offenders. Analyzing 539 Japanese homicide cases, we constructed multivariate prediction models that infer classifications defined by three dichotomous variables (stranger offender, solo offender, money-oriented motive) on the basis of crime scene information. We evaluated the validity of the models with a 10-fold cross-validation procedure and a receiver operating characteristic (ROC) analysis, and found the models to have moderate accuracy (area under the curve [AUC] = .73 to .82). We discussed the results from the perspective of the offender’s rational choices in the crime scene and crime specialization.

Publisher

SAGE Publications

Subject

Law,Psychology (miscellaneous),Pathology and Forensic Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3