Sendai virus C protein limits NO production in infected RAW264.7 macrophages

Author:

Odkhuu Erdenezaya1,Komatsu Takayuki2,Koide Naoki2,Naiki Yoshikazu2,Takeuchi Kenji3,Tanaka Yukie4,Tsolmongyn Bilegtsaikhan2,Jambalganiin Ulziisaikhan2,Morita Naoko2,Yoshida Tomoaki2,Gotoh Bin5,Yokochi Takashi2

Affiliation:

1. Department of Anatomy, Mongolian National University of Medical Sciences, Mongolia

2. Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Japan

3. Department of Genome Science and Microbiology, Faculty of Medical Sciences, University of Fukui, Japan

4. Department of Molecular Biology and Chemistry, Faculty of Medical Sciences, University of Fukui, Japan

5. Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Japan

Abstract

To suppress virus multiplication, infected macrophages produce NO. However, it remains unclear how infecting viruses then overcome NO challenge. In the present study, we report the effects of accessory protein C from Sendai virus (SeV), a prototypical paramyxovirus, on NO output. We found that in RAW264.7 murine macrophages, a mutant SeV without C protein (4C(–)) significantly enhanced inducible NO synthase (iNOS) expression and subsequent NO production compared to wild type SeV (wtSeV). SeV 4C(-) infection caused marked production of IFN-β, which is involved in induction of iNOS expression via the JAK-STAT pathway. Addition of anti-IFN-β Ab, however, resulted in only marginal suppression of NO production. In contrast, NF-κB, a primarily important factor for transcription of the iNOS gene, was also activated by 4C(–) infection but not wtSeV infection. Induction of NO production and iNOS expression by 4C(–) was significantly suppressed in cells constitutively expressing influenza virus NS1 protein that can sequester double-stranded (ds)RNA, which triggers activation of signaling pathways leading to activation of NF-κB and IRF3. Therefore, C protein appears to suppress NF-κB activation to inhibit iNOS expression and subsequent NO production, possibly by limiting dsRNA generation in the context of viral infection.

Publisher

SAGE Publications

Subject

Infectious Diseases,Cell Biology,Molecular Biology,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3