Stattic alleviates acute hepatic damage induced by LPS/d-galactosamine in mice

Author:

Li Sijia1ORCID,Hu Kai1,Li Longjiang1,Shen Yi1,Huang Jiayi1,Tang Li1,Zhang Li1,Shao Ruyue23ORCID,Lu Han4,Yang Yongqiang1ORCID

Affiliation:

1. Department of Pathophysiology, Chongqing Medical University, China

2. Clinical Medical School, Chongqing Medical and Pharmaceutical College, China

3. Chongqing Engineering Research Center of Pharmaceutical Sciences, China

4. Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China

Abstract

Increasing evidence indicates that signal transducer and activator of transcription 3 (STAT3), a vital transcription factor, plays crucial roles in the regulation of inflammation. STAT3 has become a novel therapeutic target for intervention in inflammation-related disorders. However, it remains unclear whether STAT3 plays a part in acute hepatic damage. To investigate the effects of STAT3 here, LPS/d-GalN-induced hepatic damage was induced in mice, the STAT3 inhibitor Stattic was administered, and the degree of liver injury, inflammation, and hepatocyte apoptosis were investigated. The results showed that Stattic mitigated the hepatic morphologic abnormalities and decreased the level of aminotransferase in LPS/D-GalN-insulted mice. The results also indicated that Stattic decreased the levels of TNF-α and IL-6, prevented the activation of the caspase cascade, suppressed cleavage of PARP, and decreased the quantity of TUNEL-positive cells. These results suggest that Stattic provided protective benefits in LPS/d-GalN-induced hepatic damage, and the protective effects might be associated with its anti-inflammatory and anti-apoptotic effects. Therefore, STAT3 might become a novel target for intervening in inflammation-based and apoptosis-based hepatic disorders.

Funder

the Science and Technology Research Program of Chongqing Municipal Education Commission

the National Natural Science Foundation of China

the Science and Technology Planning Project of Yuzhong district of Chongqing

Publisher

SAGE Publications

Subject

Infectious Diseases,Cell Biology,Molecular Biology,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3