Apolipoprotein A-II augments monocyte responses to LPS by suppressing the inhibitory activity of LPS-binding protein

Author:

Thompson Patricia A.1,Berbée Jimmy F.P.2,Rensen Patrick C.N.2,Kitchens Richard L.3

Affiliation:

1. Department of Internal Medicine, Division of Infectious Diseases, The University of Texas Southwestern Medical Center, Dallas, Texas, USA

2. Department of General Internal Medicine, Endocrinology, and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands

3. Department of Internal Medicine, Division of Infectious Diseases, The University of Texas Southwestern Medical Center, Dallas, Texas, USA,

Abstract

Lipopolysaccharide (LPS) binding protein (LBP) plays an important role in regulating leukocyte responses to LPS. Remarkably, it may either augment these responses at low LBP concentrations or inhibit them at high concentrations. We previously reported that native high-density lipoprotein (HDL) augments human monocyte responses to LPS by suppressing the inhibitory activity of high concentrations of LBP, a process that occurs before HDL can inhibit the response by subsequently binding and neutralizing LPS. We now show that this novel activity is conferred largely by an HDL component protein, apolipoprotein (apo)A-II. Purified apoA-II was highly active in our assays. We also found that HDL from apoA-II-deficient mice was almost completely inactive, whereas the activities of HDLs that lacked apoA-I, apoC-I, apoE, or apoC-III were similar to that of wild-type HDL. Decreased activity was also observed in rabbit HDL, which is naturally deficient in apoA-II. Incorporating human apoA-II into rabbit HDL increased its activity to levels found in human HDL. Our investigation of the mechanism of apoA-II activity revealed that LBP promoted the formation of large LPS aggregates with low bioactivity and that apoA-II inhibited the formation of these aggregates without binding and directly inhibiting LPS bioactivity. Our results suggest a novel pro-inflammatory activity of apoA-II that may help maintain sensitive host responses to LPS by suppressing LBP-mediated inhibition. Our findings also raise the possibility that the decline of plasma apoA-II during sepsis may help control the response to LPS.

Publisher

SAGE Publications

Subject

Infectious Diseases,Cell Biology,Molecular Biology,Immunology,Microbiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3