Human neutrophils depend on extrinsic factors produced by monocytes for their survival response to TLR4 stimulation

Author:

SenGupta Shuvasree12,Rane Madhavi J3,Uriarte Silvia M3ORCID,Woolley Cassandra1,Mitchell Thomas C1ORCID

Affiliation:

1. Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, Kentucky, USA

2. Current address: Life Science Institute and Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA

3. Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA

Abstract

LPS delays neutrophil apoptosis by a process generally assumed to involve cell-intrinsic TLR4 signaling. However, neutrophil survival responses to LPS have been reported to be monocyte-dependent, which would indicate more complexity than is currently appreciated. We compared the survival responses of conventionally purified vs highly purified neutrophils to confirm or refute the need for secondary cell-types and to identify the cellular or molecular mechanisms involved. Direct stimulation of TLR4 failed to extend the survival of highly purified neutrophils, but survival activity was retained in less pure neutrophil preparations containing low numbers of eosinophils, monocytes, platelets and CD3+ lymphocytes. Sequential depletions identified monocytes as the only cell type required. Transfer of culture supernatants after lipid A-conditioning revealed that purified monocytes were sufficient for production of nearly all of the survival activity observed in mixed populations. The survival factors secreted upon TLR4 stimulation remain unidentified, but were not correlated with IL-1β, IL-6 or TNF-α nor could survival activity be inhibited by Ab blockade of IL-8 or of several other candidate factors other than endogenously produced GM-CSF, which was responsible for about one-tenth of the survival activity present in conditioned supernatants. These observations confirm that ex vivo neutrophil survival responses to TLR4 agonists are not cell intrinsic and involve potentially novel factors secreted by TLR4-stimulated monocytes.

Funder

NIH-NIAID

AAI

Publisher

SAGE Publications

Subject

Infectious Diseases,Cell Biology,Molecular Biology,Immunology,Microbiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3