C4b binding protein negatively regulates TLR1/2 response

Author:

Morita Naoko1,Yamai Ikuko2,Takahashi Koichiro3,Kusumoto Yutaka2,Shibata Takuma2,Kobayashi Toshihiko24,Nonaka Mayumi I5,Ichimonji Isao1,Takagi Hidekazu1,Miyake Kensuke2,Takamura Sachiko A1

Affiliation:

1. Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Aichi, Japan

2. Division of Innate Immunity, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan

3. Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan

4. Research Institute, National Center for Global Health and Medicine, Tokyo, Japan

5. Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan

Abstract

TLR2 associates with TLR1 and recognizes microbial lipoproteins. Pam3CSK4, a triacylated lipoprotein, is anchored to the extracellular domain of TLR1 and TLR2 and induces pro-inflammatory signals. Here we show that C4b binding protein (C4BP), which is a complement pathway inhibitor, is a TLR2-associated molecule. Immunoprecipitation assay using anti-TLR2 mAb shows that C4BP binds to TLR2. In C4BP-deficient mice, Pam3CSK4-induced IL-6 levels were increased compared with wild type mice. In C4BP-expressing cells, Pam3CSK4-induced IL-8 production was reduced depending on the C4BP expression levels. These results reveal the important role of C4BP in negative regulation of TLR1/2-dependent pro-inflammatory cytokine production. Furthermore, using a fluorescent conjugated Pam3CSK4, we show that C4BP blocks the binding of Pam3CSK4 to TLR1/2. Finally, we show that exogenous C4BP also inhibits Pam3CSK4-induced signaling leading to IL-8 production. Our results indicate C4BP binding to TLR2 and consequent neutralization of its activity otherwise inducing pro-inflammatory cytokine production. C4BP is a negative regulator of TLR1/2 activity.

Publisher

SAGE Publications

Subject

Infectious Diseases,Cell Biology,Molecular Biology,Immunology,Microbiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3