Differential responses of epithelial Sertoli cells of the rat testis to Toll-like receptor 2 and 4 ligands: Implications for studies of testicular inflammation using bacterial lipopolysaccharides

Author:

Winnall Wendy R.1,Muir Julie A.2,Hedger Mark P.2

Affiliation:

1. Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, Clayton, Melbourne, Australia,

2. Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, Clayton, Melbourne, Australia

Abstract

The relative contribution of epithelial Sertoli cells in response to bacterial infection of the testis remains poorly characterised, since studies on inflammatory properties of these cells have invariably used unpurified lipopolysaccharide (LPS) preparations contaminated with bacterial lipopeptides. Consequently, isolated rat Sertoli cells were stimulated with either unextracted or phenol re-extracted LPS, and analysed for Toll-like receptor (TLR) 4, TLR2 and inflammatory cytokine gene expression by quantitative reverse transcription polymerase chain reaction (RT-PCR). Expression of TLR4 and its co-receptor protein myeloid differentiation (MD) 2 in Sertoli cells and testicular macrophages were similar, but Sertoli cells displayed low basal or LPS-induced expression of the TLR4 accessory protein, CD14. In Sertoli cells, unextracted LPS produced cytokine responses which were considerably greater in magnitude and duration compared with their response to purified LPS. Sertoli cells also responded to the synthetic lipopeptide, Pam3Cys (a TLR2 ligand) with a similar pattern of prolonged gene expression. Sertoli cells were more than 10-fold less sensitive to purified LPS than macrophages, but expressed similar levels of interleukin (IL)-1α and IL-6, and much greater levels of the immunoregulatory cytokine activin A, when maximally stimulated. These data demonstrate that Sertoli cells display differential cytokine responses to bacterial stimuli, mediated by both TLR2 and TLR4, that are distinct from those of testicular macrophages.

Publisher

SAGE Publications

Subject

Infectious Diseases,Cell Biology,Molecular Biology,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3