TLR3 activation efficiency by high or low molecular mass poly I:C

Author:

Zhou Yu12,Guo Ming1,Wang Xu2,Li Jielang2,Wang Yizhong2,Ye Li2,Dai Ming1,Zhou Li1,Persidsky Yuri2,Ho Wenzhe12

Affiliation:

1. Center for Animal Experiment/Animal Biosafety Level III Laboratory and State Key Laboratory of Virology, Wuhan University School of Medicine, Wuhan, Hubei, People's Republic of China

2. Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA, USA

Abstract

Toll-like receptor 3 (TLR3) plays a critical role in initiating type I IFN-mediated innate immunity against viral infections. TLR3 recognizes various forms of double stranded (ds) RNA, including viral dsRNA and a synthetic mimic of dsRNA, poly I:C, which has been used extensively as a TLR3 ligand to induce antiviral immunity. The activation efficiency of TLR3 by poly I:C is influenced by various factors, including size of the ligands, delivery methods and cell types. In this study, we examined the stimulatory effect of two commercially-available poly I:Cs [high molecular mass (HMM) and low molecular mass (LMM)] on TLR3 activation in various human cell types by determining the induction of type I and type III IFNs, as well as the antiviral effect. We demonstrated that the direct addition of both HMM- and LMM-poly I:C to the cultures of primary macrophages or a neuroplastoma cell line could activate TLR3. However, the transfection of poly I:C was necessary to induce TLR3 activation in other cell types studied. In all the cell lines tested, the efficiency of TLR3 activation by HMM-poly I:C was significantly higher than that by LMM-poly I:C. These observations indicate the importance and necessity of developing effective TLR3 ligands for antiviral therapy.

Publisher

SAGE Publications

Subject

Infectious Diseases,Cell Biology,Molecular Biology,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3