CD27 natural killer cell subsets play different roles during the pre-onset stage of experimental autoimmune encephalomyelitis

Author:

Gao Ming1,Yang Yan2,Li Daling3,Ming Bingxia1,Chen Huoying1,Sun Yan1,Xiao Yifan1,Lai Lin1,Zou Huijuan1,Xu Yong1,Xiong Ping1,Tan Zheng1,Gong Feili1,Zheng Fang1

Affiliation:

1. Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

2. Division of Viral Pathology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China

3. Department of Anesthesiology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

Abstract

NK cells participate in the development of human multiple sclerosis (MS) and mouse experimental autoimmune encephalomyelitis (EAE), but the roles of different NK cell subsets in disease onset remain poorly understood. In this study, murine NK cells were divided into CD27high and CD27low/− subsets. The CD27high subset was decreased and the CD27low/− subset was increased in lymphoid organs during the pre-onset stage of EAE. Compared with the counterpart in naïve mice, the CD27high subset showed lower expression of Ly49D, Ly49H and NKG2D, and less production of IFN-γ, whereas the CD27low/− subset showed similar expression of the above mentioned surface receptors but higher cytotoxic activity in EAE mice. Compared with the CD27high subset, the CD27low/− subset exhibited increased promotion of DC maturation and no significant inhibition of T cells proliferation and Th17 cells differentiation in vitro. Additionally, adoptive transfer of the CD27low/− subset, but not the CD27high subset, exacerbated the severity of EAE. Collectively, our data suggest the CD27 NK cell subsets play different roles in controlling EAE onset, which provide a new understanding for the regulation of NK cell subsets in early autoimmune disease.

Publisher

SAGE Publications

Subject

Infectious Diseases,Cell Biology,Molecular Biology,Immunology,Microbiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3