Functional characterisation of Holothuria leucospilota Fas-associated death domain in the innate immune-related signalling pathways

Author:

Li Haipeng1,Chen Ting23,Sun Hongyan4,Wu Xiaofen23,Jiang Xiao23,Ren Chunhua23ORCID

Affiliation:

1. School of Environmental Science and Engineering, Guangzhou University, PR China

2. CAS Key laboratory of Tropical Marine Bio-Resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, PR China

3. Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, PR China

4. College of Marine Sciences, South China Agricultural University, PR China

Abstract

In this study, the functions of Holothuria leucospilota Fas-associated death domain (HLFADD) in the innate immune-related signalling pathways were investigated. The results showed that over-expression of HLFADD in HEK293T cells could activate the transcription factors NF-κB and activator protein-1 (AP-1), and induce the secretion of downstream pro-inflammatory cytokines IL-6, IL-8 and IL-18, suggesting the involvement of the sea cucumber FADD in activating the NF-κB and c-Jun NH2-terminal kinase-dependent pathways. On the other hand, HLFADD could down-regulate the activations of NF-κB and AP-1 that induced by over-expression of H. leucospilota myeloid differentiation factor 88 (HLMyD88), which is supposed to be mediated through its interaction with HLMyD88 to keep the MyD88-dependent TLR signalling at a proper magnitude. The interaction of HLFADD and HLMyD88 were further supported by a co-immunoprecipitation assay. Moreover, HLFADD could activate transcription factor IFN regulatory factor-3 and induced the secretion of downstream IFN-α and IFN-β, indicating that the sea cucumber FADD may also activate the antiviral IFN signalling pathway. In summary, our study may give new insights on the functions of sea cucumber FADD in the innate immune-related signalling pathways.

Funder

Chinese Academy of Sciences

Guangdong Science and Technology Department

Guangzhou Science and Technology Program key projects

Ministry of Science and Technology of the People's Republic of China

Government of Guangdong Province

Publisher

SAGE Publications

Subject

Infectious Diseases,Cell Biology,Molecular Biology,Immunology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3