Affiliation:
1. Department of Orthopedics, Huizhou Central People’s Hospital, Huizhou, Guangdong Province, China
2. Department of Trauma Surgery, Huizhou Central People’s Hospital, Huizhou, Guangdong Province, China
Abstract
The aim of this study was to explore the role of hsa_circRNA_0000205 (circ_0000205) in chondrocyte injury in osteoarthritis (OA) and the underlying mechanism. Expression of circ_0000205, microRNA (miR)-766-3p and a disintegrin and metalloproteinase with thrombospondin motif (ADAMTS)-5 was detected by quantitative real time (qRT)-polymerase chain reaction (PCR) and Western blot assays. Cell proliferation, apoptosis, and extracellular matrix (ECM) synthesis were examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and 5-ethynyl-2-deoxyuridine assays, flow cytometry, and qRT-PCR and Western blot assays. The target relationship between miR-766-3p and circ_0000205 or ADAMTS5 was confirmed by luciferase reporter assay and RNA immunoprecipitation. IL-1β treatment could attenuate cell viability of primary chondrocytes and proliferating cell nuclear antigen (PCNA) and collagen II type alpha-1 (COL2A1) levels, and elevate apoptosis rate and cleaved caspase-3, ADAMTS5 and matrix metalloproteinase-13 (MMP13) levels, suggesting that IL-1β induced chondrocyte apoptosis and ECM degradation. Expression of circ_0000205 was up-regulated in OA tissues and IL-1β-induced primary chondrocytes, accompanied with miR-766-3p down-regulation and ADAMTS5 up-regulation. Knockdown of circ_0000205 could mitigate IL-1β-induced above effects and improve cell proliferation. Moreover, both depleting miR-766-3p and promoting ADAMTS5 could partially counteract circ_0000205 knockdown roles in IL-1β-cultured primary chondrocytes. Notably, circ_0000205 was verified as a sponge for miR-766-3p via targeting, and ADAMTS5 was a direct target for miR-766-3p. Silencing circ_0000205 could protect chondrocytes from IL-1β-induced proliferation reduction, apoptosis, and ECM degradation by targeting miR-766-3p/ADAMTS5 axis.
Subject
Infectious Diseases,Cell Biology,Molecular Biology,Immunology,Microbiology