Filifactor alocis manipulates human neutrophils affecting their ability to release neutrophil extracellular traps induced by PMA

Author:

Armstrong Cortney L1,Klaes Christopher K2,Vashishta Aruna2,Lamont Richard J3ORCID,Uriarte Silvia M123

Affiliation:

1. Department of Microbiology and Immunology, University of Louisville, USA

2. Department of Medicine, University of Louisville, USA

3. Department of Oral Immunology and Infectious Diseases, University of Louisville, USA

Abstract

Neutrophils operate at the site of injury or inflammation in the periodontal pocket to ensure periodontal health and clearance of bacterial pathogens. Filifactor alocis is recently identified as a potential periodontal pathogen, and in this study, we assessed the formation of neutrophil extracellular traps (NETs), in response to the presence of the organism . NET formation by human neutrophils was not induced when challenged with F. alocis, independent of opsonization, viability, time, or bacterial dose. F. alocis also failed to induce NETs from TNF-α-primed neutrophils and did not induce the release of extracellular neutrophil elastase. However, significant NET induction was observed when neutrophils were challenged with Streptococcus gordonii or Peptoanaerobacter stomatis, In addition, co-infection studies revealed that the presence of F. alocis with S. gordonii or P. stomatis does not enhance or reduce NETs. Additionally, F. alocis failed to impact pre-formed NETs induced by either S. gordonii or P. stomatis. Pretreatment with F. alocis prior to stimulation with phorbol 12-myristate 13-acetate (PMA), S. gordonii, or P. stomatis revealed that the bacterium is capable of reducing only PMA but not S. gordonii or P. stomatis NET formation. These results indicate that F. alocis manipulates neutrophils, inhibiting the triggering of NET induction.

Funder

National Institue of Health - National Institute of Dental and Craniofacial Research

Publisher

SAGE Publications

Subject

Infectious Diseases,Cell Biology,Molecular Biology,Immunology,Microbiology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3