Baicalin attenuates LPS-induced alveolar type II epithelial cell A549 injury by attenuation of the FSTL1 signaling pathway via increasing miR-200b-3p expression

Author:

Duan Xin-ya1,Sun Yang2,Zhao Zhu-fen3,Shi Yao-qing3,Ma Xun-yan3,Tao Li3,Liu Ming-wei3ORCID

Affiliation:

1. Department of Tuberculosis Diseases, Third People’s Hospital of Kunming City, China

2. Department of Nephrology, The Sixth Affiliated Hospital of Kunming Medical University, China

3. Department of Emergency Medicine, First Affiliated Hospital of Kunming Medical University, China

Abstract

In China, baicalin is the main active component of Scutellaria baicalensis, which has been used in the treatment of inflammation-related diseases, such as inflammation-induced acute lung injury. However, its specific mechanism remains unclear. This study examined the protective effect of baicalin on LPS-induced inflammation injury of alveolar epithelial cell line A549 and explored its protective mechanism. Compared with the LPS-induced group, the proliferation inhibition rates of alveolar type II epithelial cell line A549 intervened by different concentrations of baicalin decreased significantly, as did the levels of inflammatory factors IL-6, IL-1β, prostaglandin 2 and TNF-α in the supernatant. The expression levels of inflammatory proteins inducible NO synthase (iNOS), NF-κB65, phosphorylated ERK (p-ERK1/2), and phosphorylated c-Jun N-terminal kinase (p-JNK1) significantly decreased, as did the protein expression of follistatin-like protein 1 (FSTL1). In contrast, expression of miR-200b-3p significantly increased in a dose-dependent manner. These results suggested that baicalin could significantly inhibit the expression of inflammation-related proteins and improve LPS-induced inflammatory injury in alveolar type II epithelial cells. The mechanism may be related to the inhibition of ERK/JNK inflammatory pathway activation by increasing the expression of miR-200b-3p. Thus, FSTL1 is the regulatory target of miR-200b-3p.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Infectious Diseases,Cell Biology,Molecular Biology,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3