Affiliation:
1. School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
2. Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon, Republic of Korea
Abstract
Using a single-stranded DNA (ssDNA) aptamer exhibiting high binding affinity (Kd = 12 nM) to endotoxin as a probe, an impedance sensor where aptamer-conjugated gold nanoparticles (AuNPs) were electrochemically deposited on a gold electrode was fabricated and its performance in regard to endotoxin detection assessed. AuNPs have been employed widely as biosensors because of their unique physical and chemical properties. In order to maximize the performance of the impedance aptasensor on endotoxin detection, some critical factors affecting aptamer conjugation to AuNPs and target recognition ability (i.e. concentrations of aptamer coupled with AuNPs, pH, ion strength and cation effect at the time of aptamer–endotoxin interaction) were optimized. Electrochemical impendence spectroscopy, cyclic voltametry, atomic force microscope, scanning electron microscope and quartz crystal microbalance were employed to characterize all the modification/detection procedures during the sensor fabrication. The developed aptasensor showed a broad linear dynamic detection range (0.01–10.24 ng/ml) with a very low detection limit for endotoxin (0.005 ng/ml), despite the presence of several biomolecules (e.g. plasmid DNA, RNA, serum albumin, Glc and sucrose) known to interfere with other endotoxin assays. The demonstrated aptasensor required a detection time of only 10 min, providing a simple and fast analytical method to specifically detect endotoxin from complex biological liqors.
Subject
Infectious Diseases,Cell Biology,Molecular Biology,Immunology,Microbiology
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献