Differential effects of the Akt pathway on the internalization of Klebsiella by lung epithelium and macrophages

Author:

Chang De12ORCID,Feng Jingjing2,Liu Hongbo2,Liu Wei2,Sharma Lokesh2,Dela Cruz Charles S2

Affiliation:

1. Third Medical Center of Chinese PLA General Hospital, PR China

2. Section of Pulmonary, Internal Critical Care and Sleep Medicine, Department of Medicine, Yale University School of Medicine, USA

Abstract

Host response to lung infection includes coordinated efforts of multiple cell types, including the lung epithelium and macrophages. Importantly, both the lung epithelium and macrophages can internalize and clear invading pathogens. However, the mechanisms and their ability to internalize or phagocytose differ. Akt is a key cellular pathway that controls cell proliferation and survival, in addition to its role in host defense. The role of the Akt pathway was assessed using pharmacological Akt modulators in lung epithelial (A549) and macrophage (RAW 264.7) cell lines during Klebsiella bacterial infection. Our data show that the inhibition of the Akt pathway using specific Akt inhibitor MK2206 increased the phagocytic ability of lung epithelial cells but not of macrophages. In contrast, the activation of Akt using specific activator SC-79 decreased the phagocytic ability of epithelial cells, while it increased the phagocytic ability of macrophages. The altered phagocytic ability in both cell types using Akt modulators was not due to changes in bacterial adhesion to the host cell. The clinical usefulness of these Akt modulators may vary based on the type of infection and on the relative contribution of epithelial cells and macrophages in clearing the particular bacterial infection. The Akt pathway has differential roles in the internalization of Klebsiella bacteria by respiratory epithelial cells and immune cells.

Funder

ALA

NIH NHLBI

Beijing Nova Program Interdisciplinary Cooperation Project

China Scholarship Council

Atsumi International Scholarship Foundation

Publisher

SAGE Publications

Subject

Infectious Diseases,Cell Biology,Molecular Biology,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3