Monitoring of endothelial cell activation in experimental sepsis with a two-step cell culture model

Author:

Schildberger Anita1,Rossmanith Eva1,Weber Viktoria2,Falkenhagen Dieter1

Affiliation:

1. Centre for Biomedical Technology, Department for Clinical Medicine and Biotechnology Danube University Krems, Krems, Austria

2. Centre for Biomedical Technology, Department for Clinical Medicine and Biotechnology Danube University Krems, Krems, Austria,

Abstract

The aim of this work was to establish and characterize a cell culture model for lipopolysaccharide (LPS)-induced activation of human endothelial cells. Monocytic THP-1 cells were stimulated for 4 h with 10 ng/ml LPS from Pseudomonas aeruginosa in media containing 10% human plasma. Culture supernatants containing LPS and factors secreted by THP-1 in response to stimulation were applied to human umbilical vein endothelial cells (HUVECs). Nuclear factor-κB (NF-κB) activity, expression of adhesion molecules, and cytokine secretion were quantified. In addition, the effect of adsorptive removal of tumour necrosis factor-α (TNF-α) from the THP-1 culture supernatant on HUVEC activation was assessed. After 4 h of stimulation, THP-1 cells secreted various mediators including TNF-α (854 ± 472 pg/ml), interleukin (IL)-8 (2069 ± 710 pg/ml), IL-18 (305 ± 124 pg/ml), IL-10 (14 ± 5 pg/ml), and IL-1β (24 ± 11 pg/ml). Stimulated HUVECs showed significantly increased NF-κB activity and secreted high amounts of IL-6 and IL-8. Additionally, adhesion molecules ICAM-1 and E-selectin were increased both in the culture supernatant and at the cell surface. Removal of TNF-α from the THP-1 culture supernatant prior to HUVEC stimulation resulted in a decrease in NF-κB activity, expression of adhesion molecules, as well as IL-6 secretion. The cell culture model established in this study permits the monitoring of LPS-induced endothelial activation, which plays a central role in sepsis and may serve to assess the effect of mediator modulation by methods such as extracorporeal blood purification.

Publisher

SAGE Publications

Subject

Infectious Diseases,Cell Biology,Molecular Biology,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3