Proteoglycans in arterial smooth muscle cell cultures: an ultrastructural histochemical analysis.

Author:

Chen K,Wight T N

Abstract

The extracellular matrix in cultures of arterial smooth muscle cells has been examined by ultrastructural histochemistry using each of the following cationic dyes: ruthenium red, Alcian blue, acridine orange, and safranin O. All dyes exhibited an affinity for a structural component that was either preserved as a granule with ruthenium red or Alcian blue, or as an extended filament or bottlebrush structure with acridine orange or safranin O. Both granules and filaments were removed when the cultures were pretreated with chondroitinase ABC, an enzyme that degrades the glycosaminoglycan moiety of some proteoglycans. These structural components of the extracellular matrix were not observed when cultures were prepared in the absence of the cationic dyes. Labeling experiments (35S-sulfate) revealed that approximately 40% of the total labeled proteoglycans were lost during routine processing for electron microscopy (i.e., fixation through dehydration). Inclusion of any one of the cationic dyes during fixation reduced the losses to less than 1%. The extended filamentous structure preserved by safranin O and acridine orange resembled the structure of purified proteoglycans prepared from the same cultures and spread on cytochrome c monolayer films. These observations suggest that proteoglycans exist as extended bottlebrush structures within the extracellular matrix, and support the interpretation that the granular deposits observed in the ruthenium red and Alcian blue preparations most likely represent individual proteoglycan monomers that have undergone molecular collapse during processing. In addition, the dyes also exhibited an affinity for chords of fine fibrils that contained small granules and/or filaments. Both the fibrillar material and the associated granular and filamentous structures enmeshed in the fibrils resisted digestion with chondroitinase ABC.

Publisher

SAGE Publications

Subject

Histology,Anatomy

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3