Intervertebral disk-like biphasic scaffold—demineralized bone matrix cylinder and poly(polycaprolactone triol malate)—for interbody spine fusion

Author:

Jin Li1,Wan Yuqing1,Shimer Adam L1,Shen Francis H1,Li Xudong J1

Affiliation:

1. Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, VA, USA

Abstract

Interbody fusion is an established procedure to preserve disk height and anterior fusion, but fusion with autografts, allografts, and metallic cages has its endogenous shortcomings. The objective of this study is to investigate whether a biphasic scaffold model, the native demineralized bone matrix cylinder in conjunction with degradable biomaterial poly(polycaprolactone triol malate), can be employed as a biological graft for interbody fusion. The poly(polycaprolactone triol malate) was synthesized by polycondensing malic acid and polycaprolactone and then the concentric sheet of poly(polycaprolactone triol malate) was fabricated into the demineralized bone matrix cylinder derived from rabbit femurs. Rabbit chondrocytes were loaded onto the three-dimensional constructs with 1-day in vitro culture and implanted into the subcutaneous dorsal pocket of nude mice. The chondrocytes/scaffold constructs are approximately two folds bigger than the scaffold-alone constructs after 12 weeks of implantation. X-ray and micro-computed tomography imaging showed endochondral bone formation in the chondrocytes/scaffold constructs as early as 4 weeks and showed that the bone intensity increased over time. Histological staining confirmed the above observation. By week 8, lamellar bone tissues were formed inside the demineralized bone matrix cylinder. In addition, the compression biomechanical test showed that the chondrocytes/scaffold constructs produced a significant higher compressive strength compared to the scaffold group. These results demonstrated that the inner-phase poly(polycaprolactone triol malate) degraded over time and was replaced by new bone in an in vivo environment.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3