Bone and cartilage differentiation of a single stem cell population driven by material interface

Author:

Donnelly Hannah1,Smith Carol-Anne1,Sweeten Paula E1,Gadegaard Nikolaj2,Meek RM Dominic3,D’Este Matteo4,Mata Alvaro56,Eglin David4,Dalby Matthew J1

Affiliation:

1. Centre for Cell Engineering, University of Glasgow, Glasgow, UK

2. Division of Biomedical Engineering, University of Glasgow, Glasgow, UK

3. Department of Orthopaedics, Southern General Hospital, Glasgow, UK

4. AO Research Institute Davos, Davos, Switzerland

5. Institute of Bioengineering, Queen Mary University of London, London, UK

6. School of Engineering and Materials Science, Queen Mary University of London, London, UK

Abstract

Adult stem cells, such as mesenchymal stem cells, are a multipotent cell source able to differentiate towards multiple cell types. While used widely in tissue engineering and biomaterials research, they present inherent donor variability and functionalities. In addition, their potential to form multiple tissues is rarely exploited. Here, we combine an osteogenic nanotopography and a chondrogenic hyaluronan hydrogel with the hypothesis that we can make a complex tissue from a single multipotent cell source with the exemplar of creating a three-dimensional bone–cartilage boundary environment. Marrow stromal cells were seeded onto the topographical surface and the temperature gelling hydrogel laid on top. Cells that remained on the nanotopography spread and formed osteoblast-like cells, while those that were seeded into or migrated into the gel remained rounded and expressed chondrogenic markers. This novel, simple interfacial environment provides a platform for anisotropic differentiation of cells from a single source, which could ultimately be exploited to sort osteogenic and chondrogenic progenitor cells from a marrow stromal cell population and to develop a tissue engineered interface.

Funder

AO Foundation

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3