Spectroscopic profiling variations in extracellular vesicle biochemistry in a model of myogenesis

Author:

Davies Owen G.12ORCID,Powell Stephen3,Rickard Jonathan JS4,Clancy Michael2,Goldberg Oppenheimer Pola2

Affiliation:

1. School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK

2. School of Chemical Engineering, University of Birmingham, Birmingham, UK

3. Physical Sciences for Health Doctoral Training Centre, University of Birmingham, Birmingham, UK

4. Department of Physics, Cavendish Laboratories, University of Cambridge, Cambridge, UK

Abstract

Extracellular vesicles (EVs) hold value as accessible biomarkers for understanding cellular differentiation and related pathologies. Herein, EV biomarkers in models of skeletal muscle dormancy and differentiation have been comparatively profiled using Raman spectroscopy (RS). Significant variations in the biochemical fingerprint of EVs were detected, with an elevation in peaks associated with lipid and protein signatures during early myogenic differentiation (day 2). Principal component analysis revealed a clear separation between the spectra of EVs derived from myogenic and senescent cell types, with non-overlapping interquartile ranges and population median. Observations aligned with nanoparticle tracking data, highlighting a significant early reduction in EV concentration in senescent myoblast cultures as well as notable variations in EV morphology and diameter. As differentiation progressed physical and biochemical differences in the properties of EVs became less pronounced. This study demonstrates the applicability of RS as a high-resolution analytical method for profiling biochemical changes in EVs during early myogenesis.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,Medicine (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3