Affiliation:
1. Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
2. Department of Otorhinolaryngology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
Abstract
Three-dimensional spheroid culture enhances cell-to-cell interactions among stem cells and promotes the expression of stem cell properties; however, subsequent retrieval and delivery of these cells remain a challenge. We fabricated a thermoresponsive fiber-based microwell scaffold by combining electrospinning and hydrogel micropatterning. The resultant scaffold appeared to facilitate the formation of cellular spheroids of uniform size and enabled the expression of more stem cell-secreting growth factor genes ( EGF, IGF-1, FGF1, FGF2, and HGF), pluripotent stem cell-related genes ( SOX2 and NANOG), and adult epithelial stem cell-related genes ( LGR4, LGR5, and LGR6) than salivary gland stem cells in a monolayer culture (SGSCmonolayer). The spheroids could be retrieved efficiently by decreasing temperature. SGSC-derived spheroid (SGSCspheroid) cells were then implanted into the submandibular glands of mice at 2 weeks after fractionated X-ray irradiation at a dose of 7.5 Gy/day. At 16 weeks post-irradiation, restoration of salivary function was detected only in SGSCspheroid-implanted mice. The production of submandibular acini specific mucin increased in SGSCspheroid-implanted mice, compared with PBS control. More MIST1+ mature acinar cells were preserved in the SGSCspheroid-implanted group than in the PBS control group. Intriguingly, SGSCspheroid-implanted mice exhibited greater amelioration of tissue damage and preservation of KRT7+ terminally differentiated luminal ductal cells than SGSCmonolayer-implanted mice. The SGSCspheroid-implanted mice also showed less DNA damage and apoptotic cell death than the SGSCmonolayer-implanted mice at 2 weeks post-implantation. Additionally, a significant increase in Ki67+AQP5+ proliferative acinar cells was noted only in SGSCspheroid-implanted mice. Our results suggest that a thermoresponsive fiber-based scaffold could be of use to facilitate the production of function-enhanced SGSCspheroid cells and their subsequent retrieval and delivery to damaged salivary glands to alleviate radiation-induced apoptotic cell death and promote salivary gland regeneration.
Funder
National Research Foundation
Subject
Biomedical Engineering,Biomaterials,Medicine (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献