Generation of a tendon-like tissue from human iPS cells

Author:

Tsutsumi Hiroki1,Kurimoto Ryota1,Nakamichi Ryo2,Chiba Tomoki1,Matsushima Takahide1,Fujii Yuta1,Sanada Risa1,Kato Tomomi1,Shishido Kana1,Sakamaki Yuriko3,Kimura Tsuyoshi4,Kishida Akio4,Asahara Hiroshi12ORCID

Affiliation:

1. Department of Systems BioMedicine, Tokyo Medical and Dental University, Bunkyo City, Japan

2. Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA

3. Research Core, Tokyo Medical and Dental University, Bunkyo City, Japan

4. Department of Material-Based Medical Engineering, Tokyo Medical and Dental University, Bunkyo City, Japan

Abstract

Tendons and ligaments are essential connective tissues that connect the muscle and bone. Their recovery from injuries is known to be poor, highlighting the crucial need for an effective therapy. A few reports have described the development of artificial ligaments with sufficient strength from human cells. In this study, we successfully generated a tendon-like tissue (bio-tendon) using human induced pluripotent stem cells (iPSCs). We first differentiated human iPSCs into mesenchymal stem cells (iPSC-MSCs) and transfected them with Mohawk (Mkx) to obtain Mkx-iPSC-MSCs, which were applied to a newly designed chamber with a mechanical stretch incubation system. The embedded Mkx-iPSC-MSCs created bio-tendons and exhibited an aligned extracellular matrix structure. Transplantation of the bio-tendons into a mouse Achilles tendon rupture model showed host-derived cell infiltration with improved histological score and biomechanical properties. Taken together, the bio-tendon generated in this study has potential clinical applications for tendon/ligament-related injuries and diseases.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,Medicine (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3