Automating Research in Business and Technical Communication: Large Language Models as Qualitative Coders

Author:

Omizo Ryan M.1

Affiliation:

1. College of Liberal Arts, English, Temple University, Philadelphia, PA, USA

Abstract

The emergence of large language models (LLMs) has disrupted approaches to writing in academic and professional contexts. While much interest has revolved around the ability of LLMs to generate coherent and generically responsible texts with minimal effort and the impact that this will have on writing careers and pedagogy, less attention has been paid to how LLMs can aid writing research. Building from previous research, this study explores the utility of AI text generators to facilitate the qualitative coding research of linguistic data. This study benchmarks five LLM prompting strategies to determine the viability of using LLMs as qualitative coding, not writing, assistants, demonstrating that LLMs can be an effective tool for classifying complex rhetorical expressions and can help business and technical communication researchers quickly produce and test their research designs, enabling them to return insights more quickly and with less initial overhead.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3