Multi-objective early-stage design optimization of multifamily residential projects

Author:

Bilge Eymen Çağatay12ORCID,Yaman Hakan2

Affiliation:

1. Faculty of Architecture and Design, Istanbul Ticaret University, Istanbul, Turkey

2. Departmant of Architecture, Istanbul Technical University, Istanbul, Turkey

Abstract

The aim of this study is to find a building form and plan layout that can be used in the early stages of architectural design, where criteria such as daylight, view, sun-hour, sales area, and cost are optimized according to the different expectations of different housing type users. This study proposes a multi-objective early-stage design optimization for a real estate development project based on the NSGA2 genetic algorithm, considering weighted user preferences for different housing types. The framework is implemented using the platforms Rhino and Grasshopper; Wallacei is used for NSGA2, and Viktor.ai is used to deploy the app. Tested on six sample plots, the model was able to find architecturally optimized results that respond to different user expectations. While the model successfully demonstrated responsiveness to parameters, its focus on Pareto-optimal solutions limited the diversity of unit mixes generated. The model has been tested by professionals on a sample plot and is found to be important for architects and investors to generate ideas at an early stage of architectural design.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3