Affiliation:
1. University of the West of England, Bristol, UK
2. Bjarke Ingels Group, Copenhagen, Denmark
Abstract
Combining graph-based parametric design with metaheuristic solvers has to date focused solely on performance-based criteria and solving clearly defined objectives. In this article, we outline a new method for combining a parametric modelling environment with an interactive Cluster-Orientated Genetic Algorithm. In addition to performance criteria, evolutionary design exploration can be guided through choice alone, with user motivation that cannot be easily defined. As well as numeric parameters forming a genotype, the evolution of whole parametric definitions is discussed through the use of genetic programming. Visualisation techniques that enable mixing small populations for interactive evolution with large populations for performance-based optimisation are discussed, with examples from both academia and industry showing a wide range of applications.
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Building and Construction
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献