Reverse passive strategy exploration for building massing design-An optimization-aided approach

Author:

Wang Likai1ORCID,Luo Ting2,Shao Tong2,Ji Guohua2

Affiliation:

1. Design School, Xi'an Jiaotong-Liverpool University, Suzhou, China

2. School of Architecture and Urban Planning, Nanjing University, Nanjing, China

Abstract

In building massing design, using passive design strategies is a critical approach to reducing energy consumption while offering comfortable indoor environments. However, it is often impractical for architects to systematically explore passive design strategies at the outset of the building massing design and architectural form-finding processes, which may result in inefficient or ineffective utilization of the strategies. To address this issue, this study presents a reverse passive design strategy exploration approach that leverages the capability of computational optimization and parametric modeling to help architects identify feasible passive design strategies for building massing design. The approach is achieved using a building massing design generation and optimization tool, called EvoMass, and various building performance simulation tools in Rhino-Grasshopper. The optimization can produce site-specific design references that reflect rich performance implications associated with passive design strategies, such as atriums and self-shading. As such, architects can screen out promising passive design strategies corresponding to different performance factors from the optimization result. Two case studies related to daylighting, sky exposure, and solar heat utility are presented to demonstrate the approach, and the relevant utility and limitations are discussed.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3