Modelling generalisation gradients as augmented Gaussian functions

Author:

Lee Jessica C1ORCID,Mills Llewellyn2,Hayes Brett K1ORCID,Livesey Evan J2

Affiliation:

1. School of Psychology, University of New South Wales Sydney, Sydney, NSW, Australia

2. The University of Sydney, Sydney, NSW, Australia

Abstract

Studying generalisation of associative learning requires analysis of response gradients measured over a continuous stimulus dimension. In human studies, there is often a high degree of individual variation in the gradients, making it difficult to draw conclusions about group-level trends with traditional statistical methods. Here, we demonstrate a novel method of analysing generalisation gradients based on hierarchical Bayesian curve-fitting. This method involves fitting an augmented (asymmetrical) Gaussian function to individual gradients and estimating its parameters in a hierarchical Bayesian framework. We show how the posteriors can be used to characterise group differences in generalisation and how classic generalisation phenomena such as peak shift and area shift can be measured and inferred. Estimation of descriptive parameters can provide a detailed and informative way of analysing human generalisation gradients.

Funder

Australian Research Council

Publisher

SAGE Publications

Subject

Physiology (medical),General Psychology,Experimental and Cognitive Psychology,General Medicine,Neuropsychology and Physiological Psychology,Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3