Toxic Advanced Glycation End Products (TAGE) Theory in Alzheimer’s Disease

Author:

Sato Takashi1,Shimogaito Noriko1,Wu Xuegang1,Kikuchi Seiji1,Yamagishi Sho-ichi1,Takeuchi Masayoshi2

Affiliation:

1. Department of Pathophysiological Science, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan; Department of Neurology, Hokkaido University Graduate School of Medicine, Sapporo, Japan; and the Department of Internal Medicine III, Kurume University School of Medicine, Kurume, Japan

2. Department of Pathophysiological Science, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan; Department of Neurology, Hokkaido University Graduate School of Medicine, Sapporo, Japan; and the Department of Internal Medicine III, Kurume University School of Medicine, Kurume, Japan,

Abstract

Several epidemiological studies have reported moderately increased risks of Alzheimer’s disease (AD) in diabetic patients compared with general population. In diabetes mellitus, the formation and accumulation of advanced glycation end products (AGEs) progress more rapidly. Recent understanding of this process has confirmed that interactions between AGEs and their receptor (RAGE) may play a role in the pathogenesis of diabetic complications and AD. The authors have recently found that glyceraldehyde-derived AGEs (AGE- 2), which is predominantly the structure of toxic AGEs (TAGE), show significant toxicity on cortical neuronal cells and that the neurotoxic effect of diabetic serum is completely blocked by neutralizing antibody against the AGE-2 epitope. Moreover, in human AD brains, AGE-2 is distributed in the cytosol of neurons in the hippocampus and parahippocampal gyrus. These results suggest that TAGE is involved in the pathogenesis of AD as well as other age-related diseases. In this review, the authors discuss the molecular mechanisms of AD, especially focusing on TAGE-RAGE system.

Publisher

SAGE Publications

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Psychology,General Neuroscience

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3