Automated Measurement of Lumbar Lordosis on Radiographs Using Machine Learning and Computer Vision

Author:

Cho Brian H.12,Kaji Deepak12,Cheung Zoe B.1,Ye Ivan B.1,Tang Ray1,Ahn Amy1,Carrillo Oscar1,Schwartz John T.1ORCID,Valliani Aly A.1,Oermann Eric K.1,Arvind Varun1,Ranti Daniel1,Sun Li1,Kim Jun S.1,Cho Samuel K.1ORCID

Affiliation:

1. Icahn School of Medicine at Mount Sinai, New York, NY, USA

2. Brian H. Cho and Deepak Kaji contributed equally to this work.

Abstract

Study Design: Cross sectional database study. Objective: To develop a fully automated artificial intelligence and computer vision pipeline for assisted evaluation of lumbar lordosis. Methods: Lateral lumbar radiographs were used to develop a segmentation neural network (n = 629). After synthetic augmentation, 70% of these radiographs were used for network training, while the remaining 30% were used for hyperparameter optimization. A computer vision algorithm was deployed on the segmented radiographs to calculate lumbar lordosis angles. A test set of radiographs was used to evaluate the validity of the entire pipeline (n = 151). Results: The U-Net segmentation achieved a test dataset dice score of 0.821, an area under the receiver operating curve of 0.914, and an accuracy of 0.862. The computer vision algorithm identified the L1 and S1 vertebrae on 84.1% of the test set with an average speed of 0.14 seconds/radiograph. From the 151 test set radiographs, 50 were randomly chosen for surgeon measurement. When compared with those measurements, our algorithm achieved a mean absolute error of 8.055° and a median absolute error of 6.965° (not statistically significant, P > .05). Conclusion: This study is the first to use artificial intelligence and computer vision in a combined pipeline to rapidly measure a sagittal spinopelvic parameter without prior manual surgeon input. The pipeline measures angles with no statistically significant differences from manual measurements by surgeons. This pipeline offers clinical utility in an assistive capacity, and future work should focus on improving segmentation network performance.

Publisher

SAGE Publications

Subject

Neurology (clinical),Orthopedics and Sports Medicine,Surgery

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3