Biomechanical Analysis of Cortical Versus Pedicle Screw Fixation Stability in TLIF, PLIF, and XLIF Applications

Author:

Nomoto Edward K.1,Fogel Guy R.2,Rasouli Alexandre1,Bundy Justin V.3,Turner Alexander W.4

Affiliation:

1. Cedars-Sinai Spine Center, Los Angeles, CA, USA

2. Spine Pain Be Gone, San Antonio, TX, USA

3. Doctors Hospital, Augusta, GA, USA

4. NuVasive, Inc, San Diego, CA, USA

Abstract

Study Design: Cadaveric biomechanical study. Objectives: Medial-to-lateral trajectory cortical screws are of clinical interest due to the ability to place them through a less disruptive, medialized exposure compared with conventional pedicle screws. In this study, cortical and pedicle screw trajectory stability was investigated in single-level transforaminal lumbar interbody fusion (TLIF), posterior lumbar interbody fusion (PLIF), and extreme lateral interbody fusion (XLIF) constructs. Methods: Eight lumbar spinal units were used for each interbody/screw trajectory combination. The following constructs were tested: TLIF + unilateral facetectomy (UF) + bilateral pedicle screws (BPS), TLIF + UF + bilateral cortical screws (BCS), PLIF + medial facetectomy (MF) + BPS, PLIF + bilateral facetectomy (BF) + BPS, PLIF + MF + BCS, PLIF + BF + BCS, XLIF + BPS, XLIF + BCS, and XLIF + bilateral laminotomy + BCS. Range of motion (ROM) in flexion-extension, lateral bending, and axial rotation was assessed using pure moments. Results: All instrumented constructs were significantly more rigid than intact ( P < .05) in all test directions except TLIF + UF + BCS, PLIF + MF + BCS, and PLIF + BF + BCS in axial rotation. In general, XLIF and PLIF + MF constructs were more rigid (lowest ROM) than TLIF + UF and PLIF + BF constructs. In the presence of substantial iatrogenic destabilization (TLIF + UF and PLIF + BF), cortical screw constructs tended to be less rigid (higher ROM) than the same pedicle screw constructs in lateral bending and axial rotation; however, no statistically significant differences were found when comparing pedicle and cortical fixation for the same interbody procedures. Conclusions: Both cortical and pedicle trajectory screw fixation provided stability to the 1-level interbody constructs. Constructs with the least iatrogenic destabilization were most rigid. The more destabilized constructs showed less lateral bending and axial rotation rigidity with cortical screws compared with pedicle screws. Further investigation is warranted to understand the clinical implications of differences between constructs.

Publisher

SAGE Publications

Subject

Neurology (clinical),Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3