Machine vision-based testing action recognition method for robotic testing of mobile application

Author:

Zhang Tao1ORCID,Su Zhengqi1,Cheng Jing2,Xue Feng1,Liu Shengyu1

Affiliation:

1. School of Software, Northwestern Polytechnical University, Xi’an, China

2. School of Computer Science and Engineering, Xi’an Technological University, Xi’an, China

Abstract

The explosive growth and rapid version iteration of various mobile applications have brought enormous workloads to mobile application testing. Robotic testing methods can efficiently handle repetitive testing tasks, which can compensate for the accuracy of manual testing and improve the efficiency of testing work. Vision-based robotic testing identifies the types of test actions by analyzing expert test videos and generates expert imitation test cases. The mobile application expert imitation testing method uses machine learning algorithms to analyze the behavior of experts imitating test videos, generates test cases with high reliability and reusability, and drives robots to execute test cases. However, the difficulty of estimating multi-dimensional gestures in 2D images leads to complex algorithm steps, including tracking, detection, and recognition of dynamic gestures. Hence, this article focuses on the analysis and recognition of test actions in mobile application robot testing. Combined with the improved YOLOv5 algorithm and the ResNet-152 algorithm, a visual modeling method of mobile application test action based on machine vision is proposed. The precise localization of the hand is accomplished by injecting dynamic anchors, attention mechanism, and the weighted boxes fusion in the YOLOv5 algorithm. The improved algorithm recognition accuracy increased from 82.6% to 94.8%. By introducing the pyramid context awareness mechanism into the ResNet-152 algorithm, the accuracy of test action classification is improved. The accuracy of the test action classification was improved from 72.57% to 76.84%. Experiments show that this method can reduce the probability of multiple detections and missed detection of test actions, and improve the accuracy of test action recognition.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Reference29 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robotic Process Automation Efficiency for Mobile App Testing: An Empirical Investigation;International Journal of Software Engineering and Knowledge Engineering;2024-05-14

2. Practical Non-Intrusive GUI Exploration Testing with Visual-based Robotic Arms;Proceedings of the IEEE/ACM 46th International Conference on Software Engineering;2024-04-12

3. Research on Intelligent Gesture Recognition System Based on STM32;2023 China Automation Congress (CAC);2023-11-17

4. An Online Method for Supporting and Monitoring Repetitive Physical Activities Based on Restricted Boltzmann Machines;Journal of Sensor and Actuator Networks;2023-09-22

5. Computer vision-based hand gesture recognition for human-robot interaction: a review;Complex & Intelligent Systems;2023-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3