Distributed filtering in sensor networks based on linear minimum mean square error criterion with limited sensing range

Author:

Shao Teng1ORCID

Affiliation:

1. School of Electrical and Information Engineering, Anhui University of Science & Technology, Huainan, China

Abstract

One of the fundamental problems in sensor networks is to estimate and track the target states of interest that evolve in the sensing field. Distributed filtering is an effective tool to deal with state estimation in which each sensor only communicates information with its neighbors in sensor networks without the requirement of a fusion center. However, in the majority of the existing distributed filters, it is assumed that typically all sensors possess unlimited field of view to observe the target states. This is quite restrictive since practical sensors have limited sensing range. In this article, we consider distributed filtering based on linear minimum mean square error criterion in sensor networks with limited sensing range. To achieve the optimal filter and consensus, two types of strategies based on linear minimum mean square error criterion are proposed, that is, linear minimum mean square error filter based on measurement and linear minimum mean square error filter based on estimate, according to the difference of the neighbor sensor information received by the sensor. In linear minimum mean square error filter based on measurement, the sensor node collects measurement from its neighbors, whereas in linear minimum mean square error filter based on estimate, the sensor node collects estimate from its neighbors. The stability and computational complexity of linear minimum mean square error filter are analyzed. Numerical experimental results further verify the effectiveness of the proposed methods.

Funder

Scientific Research Foundation for the High-Level Introduction Personnel in Anhui University of Science and Technology

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3