Hybrid multi-objective node deployment for energy-coverage problem in mobile underwater wireless sensor networks

Author:

Fattah Salmah12ORCID,Ahmedy Ismail1,Idris Mohd Yamani Idna1,Gani Abdullah2

Affiliation:

1. Department of Computer System and Technology, Faculty of Computer Science and Information Technology, University of Malaya (UM), Kuala Lumpur, Malaysia

2. Faculty of Computing and Informatics, Universiti Malaysia Sabah (UMS), Kota Kinabalu, Malaysia

Abstract

Underwater wireless sensor networks have grown considerably in recent years and now contribute substantially to ocean surveillance applications, marine monitoring and target detection. However, the existing deployment solutions struggle to address the deployment of mobile underwater sensor nodes as a stochastic system. The system faces internal and external environment problems that must be addressed for maximum coverage in the deployment region while minimizing energy consumption. In addition, the existing traditional approaches have limitations of improving simultaneously the objective function of network coverage and the dissipated energy in mobility, sensing and redundant coverage. The proposed solution introduced a hybrid adaptive multi-parent crossover genetic algorithm and fuzzy dominance-based decomposition approach by adapting the original non-dominated sorting genetic algorithm II. This study evaluated the solution to substantiate its efficacy, particularly regarding the nodes’ coverage rate, energy consumption and the system’s Pareto optimal metrics and execution time. The results and comparative analysis indicate that the Multi-Objective Optimisation Genetic Algorithm based on Adaptive Multi-Parent Crossover and Fuzzy Dominance (MOGA-AMPazy) is a better solution to the multi-objective sensor node deployment problem, outperforming the non-dominated sorting genetic algorithm II, SPEA2 and MOEA/D algorithms. Moreover, MOGA-AMPazy ensures maximum global convergence and has less computational complexity. Ultimately, the proposed solution enables the decision-maker or mission planners to monitor effectively the region of interest.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3