Energy-efficient and intelligent cooperative spectrum sensing algorithm in cognitive radio networks

Author:

Huang Tangsen1ORCID,Yin Xiangdong1,Li Xiaowu1

Affiliation:

1. School of electronics and Information Engineering, Hunan University of Science and Engineering, Yongzhou, China

Abstract

Green communication is the demand of current and future wireless communication. As the next-generation communication network, cognitive radio network also needs to meet the requirements of green communication. Therefore, improving energy efficiency is an inevitable requirement for the development of cognitive radio networks. However, there is a need to compromise sensing performance while improving energy efficiency. To take into account the two important indicators of sensing performance and energy efficiency, a grouping algorithm is proposed in this article, which can effectively improve the energy efficiency while improving the spectrum sensing performance. The algorithm obtains the initial value of the reliability of the nodes through training, and sorts them according to the highest reliability value, then selects an even number of nodes with the highest reliability value, and divides the selected nodes into two groups, and the two groups of nodes take turns in Alternate work. At this time, other nodes not participating in cooperative spectrum sensing are in a silent state, waiting for the instruction of the fusion center. The experimental results show that compared with the traditional algorithm, the proposed algorithm has a great improvement in the two indicators of sensing performance and energy efficiency.

Funder

National Natural Science Foundation of China

Outstanding Youth Research Foundation of Hunan Province

natural science foundation of hunan province

Hunan Natural Science Foundation

National Natural Science Foundation of China Youth Project

Youth Research Foundation of Hunan Education Department

Hunan University of Science and Engineering

Hunan Provincial Social Science Review Committee

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3