“Fake News” Is Not Simply False Information: A Concept Explication and Taxonomy of Online Content

Author:

Molina Maria D.1,Sundar S. Shyam1,Le Thai1,Lee Dongwon1

Affiliation:

1. Penn State University, University Park, PA, USA

Abstract

As the scourge of “fake news” continues to plague our information environment, attention has turned toward devising automated solutions for detecting problematic online content. But, in order to build reliable algorithms for flagging “fake news,” we will need to go beyond broad definitions of the concept and identify distinguishing features that are specific enough for machine learning. With this objective in mind, we conducted an explication of “fake news” that, as a concept, has ballooned to include more than simply false information, with partisans weaponizing it to cast aspersions on the veracity of claims made by those who are politically opposed to them. We identify seven different types of online content under the label of “fake news” (false news, polarized content, satire, misreporting, commentary, persuasive information, and citizen journalism) and contrast them with “real news” by introducing a taxonomy of operational indicators in four domains—message, source, structure, and network—that together can help disambiguate the nature of online news content.

Funder

national science foundation

Publisher

SAGE Publications

Subject

General Social Sciences,Sociology and Political Science,Education,Cultural Studies,Social Psychology

Cited by 254 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Are Strong Baselines Enough? False News Detection with Machine Learning;Future Internet;2024-09-05

2. Introducción;Espejo de Monografías de Comunicación Social;2024-09-03

3. Capítulo 6. Nuevas tendencias en el periodismo digital;Espejo de Monografías de Comunicación Social;2024-09-03

4. Capítulo 5. Organización de la información en internet;Espejo de Monografías de Comunicación Social;2024-09-03

5. Capítulo 4. Las audiencias digitales;Espejo de Monografías de Comunicación Social;2024-09-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3