Affiliation:
1. Penn State University, University Park, PA, USA
Abstract
As the scourge of “fake news” continues to plague our information environment, attention has turned toward devising automated solutions for detecting problematic online content. But, in order to build reliable algorithms for flagging “fake news,” we will need to go beyond broad definitions of the concept and identify distinguishing features that are specific enough for machine learning. With this objective in mind, we conducted an explication of “fake news” that, as a concept, has ballooned to include more than simply false information, with partisans weaponizing it to cast aspersions on the veracity of claims made by those who are politically opposed to them. We identify seven different types of online content under the label of “fake news” (false news, polarized content, satire, misreporting, commentary, persuasive information, and citizen journalism) and contrast them with “real news” by introducing a taxonomy of operational indicators in four domains—message, source, structure, and network—that together can help disambiguate the nature of online news content.
Funder
national science foundation
Subject
General Social Sciences,Sociology and Political Science,Education,Cultural Studies,Social Psychology
Cited by
254 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Are Strong Baselines Enough? False News Detection with Machine Learning;Future Internet;2024-09-05
2. Introducción;Espejo de Monografías de Comunicación Social;2024-09-03
3. Capítulo 6. Nuevas tendencias en el periodismo digital;Espejo de Monografías de Comunicación Social;2024-09-03
4. Capítulo 5. Organización de la información en internet;Espejo de Monografías de Comunicación Social;2024-09-03
5. Capítulo 4. Las audiencias digitales;Espejo de Monografías de Comunicación Social;2024-09-03