Estimation of Mortality Rates for Disease Simulation Models Using Bayesian Evidence Synthesis

Author:

McMahon Pamela M.1,Zaslavsky Alan M.2,Weinstein Milton C.3,Kuntz Karen M.3,Weeks Jane C.4,Gazelle G. Scott5

Affiliation:

1. Institute for Technology Assessment, Massachusetts General Hospital, Boston,

2. Department of Health Care Policy, Harvard Medical School, Boston

3. Department of Health Policy and Management, Harvard School of Public Health, Boston

4. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston

5. Institute for Technology Assessment, Massachusetts General Hospital, Boston, Department of Health Policy and Management, Harvard School of Public Health, Boston

Abstract

Purpose. The authors propose a Bayesian approach for estimating competing risks for inputs to disease simulation models. This approach is suggested when modeling a disease that causes a large proportion of all-cause mortality, particularly when mortality from the disease of interest and other-cause mortality are both affected by the same risk factor. Methods. The authors demonstrate a Bayesian evidence synthesis by estimating other-cause mortality, stratified by smoking status, for use in a simulation model of lung cancer. National (US) survey data linked to death registries (National Health Interview Survey [NHIS]—Multiple Cause of Death files) were used to fit cause-specific hazard models for 3 causes of death (lung cancer, heart disease, and all other causes), controlling for age, sex, race, and smoking status. Synthesis of NHIS data with national vital statistics data on numbers and causes of deaths was performed in WinBUGS (version 1.4.1, MRC Biostatistics Unit, UK). Correction for inconsistencies between the NHIS and vital statistics data is described. A published cohort study was a source of prior information for smoking-related mortality. Results. Marginal posterior densities of annual mortality rates for lung cancer and other-cause death (further divided into heart disease and all other causes), stratified by 5-year age interval, race (white and black), gender, and smoking status (current, former, never), were estimated, specific to a time period (1987-1995). Overall, black current smokers experienced the highest mortality rates. Conclusions. Bayesian evidence synthesis is an effective method for estimation of cause-specific mortality rates, stratified by demographic factors.

Publisher

SAGE Publications

Subject

Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3