Use of Nomograms for Personalized Decision-Analytic Recommendations

Author:

Fu Alex Z.1,Cantor Scott B.2,Kattan Michael W.3

Affiliation:

1. Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio

2. Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas

3. Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio,

Abstract

Objective. A difficulty with applying decision analysis at the bedside is that it generally requires computer software for the calculations, which may render the method impractical. The purpose of this study was to illustrate the feasibility of developing a regression model that approximates the results from a published decision-analytic model for prostate cancer and permits bedside generation of personalized decision-analytic recommendations with a paper nomogram. Methods. The authors used the example of radical prostatectomy v. watchful waiting for patients with early-stage prostate cancer. First, they took a published decision analysis and generated recommendations using simulated data where patient baseline factors and preference scores for health states were systematically varied. Multivariable logistic regression was used to identify the parameters with strong associations with the recommendation. A reduced model was fit that excluded other preference scores except for watchful waiting. They compared the recommended management predictive accuracies from the full v. reduced model at the individual patient level for 63 men from another published study. Discrimination was assessed using receiver operating characteristic (ROC) curve analysis. A nomogram was constructed from the covariates in the reduced model. Results. The reduced logistic regression model predicted the recommendations accurately for the 63 patients, with an area under the ROC curve of 0.92. Discrimination was excellent as demonstrated by histograms. Conclusions. The authors demonstrated that logistic regression modeling allows accurate reproduction of decision-analytic recommendations with simplified calculations, which can be accomplished using a graphic nomogram. This approach should facilitate clinical decision analysis at the bedside.

Publisher

SAGE Publications

Subject

Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3