The University of Wisconsin Breast Cancer Epidemiology Simulation Model: An Update

Author:

Alagoz Oguzhan1,Ergun Mehmet Ali1,Cevik Mucahit2,Sprague Brian L.3,Fryback Dennis G.4,Gangnon Ronald E.5,Hampton John M.6,Stout Natasha K.7,Trentham-Dietz Amy6

Affiliation:

1. Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, WI

2. University of Toronto, Toronto, ON, Canada

3. Department of Surgery and University of Vermont Cancer Center, University of Vermont, Burlington, VT

4. Department of Population Health Sciences, University of Wisconsin-Madison, Madison, WI

5. Department of Population Health Sciences and Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI

6. Department of Population Health Sciences and Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI

7. Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA

Abstract

The University of Wisconsin Breast Cancer Epidemiology Simulation Model (UWBCS), also referred to as Model W, is a discrete-event microsimulation model that uses a systems engineering approach to replicate breast cancer epidemiology in the US over time. This population-based model simulates the lifetimes of individual women through 4 main model components: breast cancer natural history, detection, treatment, and mortality. A key feature of the UWBCS is that, in addition to specifying a population distribution in tumor growth rates, the model allows for heterogeneity in tumor behavior, with some tumors having limited malignant potential (i.e., would never become fatal in a woman’s lifetime if left untreated) and some tumors being very aggressive based on metastatic spread early in their onset. The model is calibrated to Surveillance, Epidemiology, and End Results (SEER) breast cancer incidence and mortality data from 1975 to 2010, and cross-validated against data from the Wisconsin cancer reporting system. The UWBCS model generates detailed outputs including underlying disease states and observed clinical outcomes by age and calendar year, as well as costs, resource usage, and quality of life associated with screening and treatment. The UWBCS has been recently updated to account for differences in breast cancer detection, treatment, and survival by molecular subtypes (defined by ER/HER2 status), to reflect the recent advances in screening and treatment, and to consider a range of breast cancer risk factors, including breast density, race, body-mass-index, and the use of postmenopausal hormone therapy. Therefore, the model can evaluate novel screening strategies, such as risk-based screening, and can assess breast cancer outcomes by breast cancer molecular subtype. In this article, we describe the most up-to-date version of the UWBCS.

Funder

National Cancer Institute

Publisher

SAGE Publications

Subject

Health Policy

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3