Prognostic Modeling with Logistic Regression Analysis

Author:

Steyerberg Ewout W.1,Eijkemans Marinus J. C.1,Harrell Frank E.2,Habbema J. Dik F.1

Affiliation:

1. Center for Clinical Decision Sciences, Department of Public Health, Erasmus University, Rotterdam, the Netherlands

2. Division of Biostatistics and Epidemiology, Department of Health Evaluation Sciences, University of Virginia, Charlottesville, Virginia

Abstract

Clinical decision making often requires estimates of the likelihood of a dichotomous outcome in individual patients. When empirical data are available, these estimates may well be obtained from a logistic regression model. Several strategies may be followed in the development of such a model. In this study, the authors compare alternative strategies in 23 small subsamples from a large data set of patients with an acute myocardial infarction, where they developed predictive models for 30-day mortality. Evaluations were performed in an independent part of the data set. Specifically, the authors studied the effect of coding of covariables and stepwise selection on discriminative ability of the resulting model, and the effect of statistical “shrinkage” techniques on calibration. As expected, dichotomization of continuous covariables implied a loss of information. Remarkably, stepwise selection resulted in less discriminating models compared to full models including all available covariables, even when more than half of these were randomly associated with the outcome. Using qualitative information on the sign of the effect of predictors slightly improved the predictive ability. Calibration improved when shrinkage was applied on the standard maximum likelihood estimates of the regression coefficients. In conclusion, a sensible strategy in small data sets is to apply shrinkage methods in full models that include well-coded predictors that are selected based on external information.

Publisher

SAGE Publications

Subject

Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3