Cost-Effectiveness Analysis Using Data from Multinational Trials: The Use of Bivariate Hierarchical Modeling

Author:

Manca Andrea1,Lambert Paul C.2,Sculpher Mark3,Rice Nigel3

Affiliation:

1. Centre for Health Economics, University of York, UK,

2. Centre for Biostatistics & Genetic Epidemiology, Department of Health Sciences, University of Leicester, UK

3. Centre for Health Economics, University of York, UK

Abstract

Health care cost-effectiveness analysis (CEA) often uses individual patient data (IPD) from multinational randomized controlled trials. Although designed to account for between-patient sampling variability in the clinical and economic data, standard analytical approaches to CEA ignore the presence of between-location variability in the study results. This is a restrictive limitation given that countries often differ in factors that could affect the results of CEAs, such as the availability of health care resources, their unit costs, clinical practice, and patient case mix. The authors advocate the use of Bayesian bivariate hierarchical modeling to analyze multinational cost-effectiveness data. This analytical framework explicitly recognizes that patient-level costs and outcomes are nested within countries. Using real-life data, the authors illustrate how the proposed methods can be applied to obtain (a) more appropriate estimates of overall cost-effectiveness and associated measure of sampling uncertainty compared to standard CEA and (b) country-specific cost-effectiveness estimates that can be used to assess the between-location variability of the study results while controlling for differences in country-specific and patientspecific characteristics. It is demonstrated that results from standard CEA using IPD from multinational trials display a large degree of variability across the 17 countries included in the analysis, producing potentially misleading results. In contrast, ``shrinkage estimates'' obtained from the modeling approach proposed here facilitate the appropriate quantification of country-specific cost-effectiveness estimates while weighting the results based on the level of information available within each country. The authors suggest that the methods presented here represent a general framework for the analysis of economic data collected from different locations.

Publisher

SAGE Publications

Subject

Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3