The Future of AI in Ovarian Cancer Research: The Large Language Models Perspective

Author:

Laios Alexandros1ORCID,Theophilou Georgios1,De Jong Diederick1ORCID,Kalampokis Evangelos2

Affiliation:

1. Department of Gynaecologic Oncology, ESGO Center of Excellence for Ovarian Cancer Surgery, St James’s University Hospital, Leeds, UK

2. Information Systems Lab, Department of Business Administration, University of Macedonia, Thessaloniki, Greece

Abstract

Conversational large language model (LLM)-based chatbots utilize neural networks to process natural language. By generating highly sophisticated outputs from contextual input text, they revolutionize the access to further learning, leading to the development of new skills and personalized interactions. Although they are not developed to provide healthcare, their potential to address biomedical issues is rather unexplored. Healthcare digitalization and documentation of electronic health records is now developing into a standard practice. Developing tools to facilitate clinical review of unstructured data such as LLMs can derive clinical meaningful insights for ovarian cancer, a heterogeneous but devastating disease. Compared to standard approaches, they can host capacity to condense results and optimize analysis time. To help accelerate research in biomedical language processing and improve the validity of scientific writing, task-specific and domain-specific language models may be required. In turn, we propose a bespoke, proprietary ovarian cancer-specific natural language using solely in-domain text, whereas transfer learning drifts away from the pretrained language models to fine-tune task-specific models for all possible downstream applications. This venture will be fueled by the abundance of unstructured text information in the electronic health records resulting in ovarian cancer research ultimately reaching its linguistic home.

Publisher

SAGE Publications

Subject

Oncology,Hematology,General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3