Analysis of Prognostic Factors of Low-Grade Gliomas in Adults Using Time-Dependent Competing Risk Models: A Population Study Based on the Surveillance, Epidemiology, and End Results Database

Author:

Cai Kaiwei12ORCID,Han Didi34,Deng Die12,Ke Man12,Peng Min12,Lyu Jun5ORCID,Xu Anding12

Affiliation:

1. Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China

2. Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China

3. Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, China

4. School of Public Health, Xi’an Jiaotong University Health Science Center, Shaanxi, China

5. Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China

Abstract

Background Because of multiple competing death outcomes and time-varying coefficients, using a Cox regression model to analyze the prognostic factors of low-grade gliomas (LGG) may lead to a possible bias. Therefore, we adopted time-dependent competing risk models to obtain accurate prognostic factors for LGG. Methods In this retrospective cohort study, data were extracted from patients enrolled in the Surveillance, Epidemiology, and End Results (SEER) database between 2000 and 2018. Univariate analysis was performed using the cumulative incidence function (CIF) and Kaplan-Meier (KM) function. Time-dependent competing risk and Cox regression models were used in the multivariable analysis. Results A total of 2581 patients were diagnosed with low-grade glioma, among whom 889 died from low-grade glioma, 114 died from other causes, and the rest were alive. The time-dependent competing risk models indicated that age, sex, marital status, primary tumor site, histological type, tumor diameter, surgery, and year of diagnosis were significantly associated with low-grade glioma-specific death, and the relative effect of age, tumor diameter, surgery, oligodendroglioma, and mixed glioma on low-grade glioma-specific death changed over time. Compared with the competing risk models, the Cox regression model misestimated the hazard ratio (HR) of covariates on the outcome and even produced false-negative results. Conclusions The time-dependent competing risk models were better than the Cox regression model for evaluating the impact of covariates on low-grade glioma-specific mortality in the presence of competing risks and time-varying coefficients. The models identified the prognostic factors of LGG more accurately than the Cox regression model.

Publisher

SAGE Publications

Subject

Oncology,Hematology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3