Biomechanics in an Incomplete Versus Complete Supraspinatus Tear: A Cadaveric Study

Author:

Rybalko Danil1,Bobko Aimee1,Amirouche Farid1,Peresada Dmitriy1,Hussain Awais1,Patetta Michael1,Sood Anshum1,Koh Jason2,Goldberg Benjamin1

Affiliation:

1. Department of Orthopaedic Surgery, University of Illinois at Chicago, Chicago, Illinois, USA.

2. Department of Orthopaedic Surgery, NorthShore University HealthSystem, Evanston, Illinois, USA.

Abstract

Background: Degenerative and traumatic changes to the rotator cuff can result in massive and irreparable rotator cuff tears (RCTs). Purpose/Hypothesis: The study objective was to conduct a biomechanical comparison between a small, incomplete RCT and a large, complete RCT. We hypothesized that the incomplete supraspinatus (SS) tear would lead to an incremental loss of abduction force and preserve vertical position of the humeral head, while a complete SS tear would cause superior humeral migration, decrease functional deltoid abduction force, and increase passive range of motion (ROM). Study Design: Controlled laboratory study. Methods: Six cadaveric shoulders were evaluated using a custom testing apparatus. Each shoulder was subjected to 3 conditions: (1) intact/control, (2) 50%, full-thickness, incomplete SS tear, and (3) 100%, complete SS tear. Deltoid abduction force, superior humeral head migration, and passive ROM were measured in static conditions at 0°, 30°, and 60° of glenohumeral abduction, respectively. Results: The intact SS resulted in a mean deltoid abduction force of 2.5, 3.3, and 3.8 N at 0°, 30°, and 60° of abduction, respectively. Compared with the intact shoulder, there was no significant difference in mean abduction force seen in the incomplete tear, while the force was significantly decreased by 52% at 30° of abduction in the complete tear ( P = .009). Compared with the incomplete tear, there were significant decreases in abduction force seen in the complete tear, by 33% and 48% (0.9 N and 1.1 N) at 0° and 30° of abduction, respectively ( P = .04 and .004). The intact configuration experienced a mean superior humeral head migration of 1.5, 1.4, and 1.1 mm at 0°, 30°, and 60° of abduction, respectively. The complete tear resulted in a superior migration of 3.0 and 4.4 mm greater than the intact configuration at 0° and 30° of abduction, respectively ( P = .001). There was a 5° and 10° increase in abduction ROM with 50% and 100% tears, respectively ( P = .003 and .03). Conclusion: An incomplete SS tear does not significantly alter the biomechanics of the shoulder, while a large, complete SS tear leads to a significant superior humeral migration, a decreased deltoid abduction force, and a mild increase in passive ROM. Clinical Relevance: Our findings demonstrate the effects of large SS tears on key biomechanical parameters, as they progress from partial tears.

Publisher

SAGE Publications

Subject

Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3