Dose and Recovery Response of Patellofemoral Cartilage Deformations to Running

Author:

Heckelman Lauren N.12,Riofrio Alexie D.3,Vinson Emily N.3,Collins Amber T.1,Gwynn Olivia R.12,Utturkar Gangadhar M.1,Goode Adam P.145,Spritzer Charles E.3,DeFrate Louis E.126

Affiliation:

1. Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, USA.

2. Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA.

3. Department of Radiology, Duke University School of Medicine, Durham, North Carolina, USA.

4. Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina, USA.

5. Duke Clinical Research Institute, Durham, North Carolina, USA.

6. Department of Mechanical Engineering & Materials Science, Pratt School of Engineering, Duke University, Durham, North Carolina, USA.

Abstract

Background: Running is a common recreational activity that provides many health benefits. However, it remains unclear how patellofemoral cartilage is affected by varied running distances and how long it takes the cartilage to recover to its baseline state after exercise. Hypothesis: We hypothesized that patellofemoral cartilage thickness would decrease immediately after exercise and return to its baseline thickness by the following morning in asymptomatic male runners. We further hypothesized that we would observe a significant distance-related dose response, with larger compressive strains (defined here as the mean change in cartilage thickness measured immediately after exercise, divided by the pre-exercise cartilage thickness) observed immediately after 10-mile runs compared with 3-mile runs. Study Design: Descriptive laboratory study. Methods: Eight asymptomatic male participants underwent magnetic resonance imaging of their dominant knee before, immediately after, and 24 hours after running 3 and 10 miles at a self-selected pace (on separate visits). Results: Mean patellar cartilage thicknesses measured before exercise and after the 24-hour recovery period were significantly greater than the thicknesses measured immediately after both the 3- and 10-mile runs ( P < .001). This relationship was not observed in trochlear cartilage. Mean patellar cartilage compressive strains were significantly greater after 10-mile runs compared with 3-mile runs (8% vs 5%; P = .01). Conclusion: Patellar cartilage thickness decreased immediately after running and returned to its baseline thickness within 24 hours of running up to 10 miles. Furthermore, patellar cartilage compressive strains were dose-dependent immediately after exercise. Clinical Relevance: These findings provide critical baseline data for understanding patellofemoral cartilage biomechanics in asymptomatic male runners that may be used to optimize exercise protocols and investigations targeting those with running-induced patellofemoral pain.

Publisher

SAGE Publications

Subject

Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3