A Prediction Model for Primary Anterior Cruciate Ligament Injury Using Artificial Intelligence

Author:

Tamimi Iskandar1,Ballesteros Joaquin2,Lara Almudena Perez3,Tat Jimmy4,Alaqueel Motaz5,Schupbach Justin5,Marwan Yousef5,Urdiales Cristina6,Gomez-de-Gabriel Jesus Manuel7,Burman Mark5,Martineau Paul Andre5

Affiliation:

1. Knee Division, Hospital Regional Universitario de Málaga, Málaga, Spain.

2. ITIS Software, Universidad de Málaga, Málaga, Spain.

3. Department of Radiology, Hospital Regional Universitario de Málaga, Málaga, Spain.

4. Department of Surgery, Division of Orthopaedic Surgery, University of Toronto, Toronto, Ontario, Canada.

5. Division of Orthopaedic Surgery, McGill University Health Centre, Montreal, Canada.

6. Electronics Technology Department, Escuela de Ingeniería Telecomunicación, University of Malaga, Málaga, Spain.

7. Robotics and Mechatronics Group, Escuela de Ingenierías Industriales, University of Malaga, Málaga, Spain.

Abstract

Background: Supervised machine learning models in artificial intelligence (AI) have been increasingly used to predict different types of events. However, their use in orthopaedic surgery has been limited. Hypothesis: It was hypothesized that supervised learning techniques could be used to build a mathematical model to predict primary anterior cruciate ligament (ACL) injuries using a set of morphological features of the knee. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Included were 50 adults who had undergone primary ACL reconstruction between 2008 and 2015. All patients were between 18 and 40 years of age at the time of surgery. Patients with a previous ACL injury, multiligament knee injury, previous ACL reconstruction, history of ACL revision surgery, complete meniscectomy, infection, missing data, and associated fracture were excluded. We also identified 50 sex-matched controls who had not sustained an ACL injury. For all participants, we used the preoperative magnetic resonance images to measure the anteroposterior lengths of the medial and lateral tibial plateaus as well as the lateral and medial bone slope (LBS and MBS), lateral and medial meniscal height (LMH and MMH), and lateral and medial meniscal slope (LMS and MMS). The AI predictor was created using Matlab R2019b. A Gaussian naïve Bayes model was selected to create the predictor. Results: Patients in the ACL injury group had a significantly increased posterior LBS (7.0° ± 4.7° vs 3.9° ± 5.4°; P = .008) and LMS (–1.7° ± 4.8° vs –4.0° ± 4.2°; P = .002) and a lower MMH (5.5 ± 0.1 vs 6.1 ± 0.1 mm; P = .006) and LMH (6.9 ± 0.1 vs 7.6 ± 0.1 mm; P = .001). The AI model selected LBS and MBS as the best possible predictive combination, achieving 70% validation accuracy and 92% testing accuracy. Conclusion: A prediction model for primary ACL injury, created using machine learning techniques, achieved a >90% testing accuracy. Compared with patients who did not sustain an ACL injury, patients with torn ACLs had an increased posterior LBS and LMS and a lower MMH and LMH.

Publisher

SAGE Publications

Subject

Orthopedics and Sports Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3