Reliability of Manual Measurements Versus Semiautomated Software for Glenoid Bone Loss Quantification in Patients With Anterior Shoulder Instability

Author:

Karpinski Katrin1,Akguen Doruk1,Gebauer Henry1,Paksoy Alp1,Lupetti Mattia2,Markova Viktoria2,Zettinig Oliver2,Moroder Philipp3

Affiliation:

1. Centrum für Muskuloskeletale Chirurgie, Charité–Universitätsmedizin Berlin, Berlin, Germany

2. ImFusion, Munich, Germany

3. Schulthess Klinik, Zürich, Switzerland

Abstract

Background: The presence of glenoid bone defects is indicative in the choice of treatment for patients with anterior shoulder instability. In contrast to traditional linear- and area-based measurements, techniques such as the consideration of glenoid concavity have been proposed and validated. Purpose: To compare the reliability of linear (1-dimensional [1D]), area (2-dimensional [2D]), and concavity (3-dimensional [3D]) measurements to quantify glenoid bone loss performed manually and to analyze how automated measurements affect reliability. Study Design: Cohort study (diagnosis); Level of evidence, 3. Methods: Computed tomography images of 100 patients treated for anterior shoulder instability with differently sized glenoid defects were evaluated independently by 2 orthopaedic surgeons manually using conventional software (OsiriX; Pixmeo) as well as automatically with a dedicated prototype software program (ImFusion Suite; ImFusion). Parameters obtained included 1D (defect diameter, best-fit circle diameter), 2D (defect area, best-fit circle area), and 3D (bony shoulder stability ratio) measurements. Mean values and reliability as expressed by the intraclass correlation coefficient [ICC]) were compared between the manual and automated measurements. Results: When manually obtained, the measurements showed almost perfect agreement for 1D parameters (ICC = 0.83), substantial agreement for 2D parameters (ICC = 0.79), and moderate agreement for the 3D parameter (ICC = 0.48). When measurements were aided by automated software, the agreement between raters was almost perfect for all parameters (ICC = 0.90 for 1D, 2D, and 3D). There was a significant difference in mean values between manually versus automatically obtained measurements for 1D, 2D, and 3D parameters ( P < .001 for all). Conclusion: While more advanced measurement techniques that take glenoid concavity into account are more accurate in determining the biomechanical relevance of glenoid bone loss, our study showed that the reliability of manually performed, more complex measurements was moderate.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3