Machine Learning Outperforms Logistic Regression Analysis to Predict Next-Season NHL Player Injury: An Analysis of 2322 Players From 2007 to 2017

Author:

Luu Bryan C.1,Wright Audrey L.1,Haeberle Heather S.23,Karnuta Jaret M.2,Schickendantz Mark S.2,Makhni Eric C.4,Nwachukwu Benedict U.3,Williams Riley J.3,Ramkumar Prem N.2

Affiliation:

1. Department of Orthopedic Surgery, Baylor College of Medicine, Houston, Texas, USA.

2. Machine Learning Orthopaedics Lab, Cleveland Clinic, Cleveland, Ohio, USA.

3. Hospital for Special Surgery, New York, New York, USA.

4. Department of Orthopaedics, Henry Ford Health System, West Bloomfield, Michigan, USA.

Abstract

Background: The opportunity to quantitatively predict next-season injury risk in the National Hockey League (NHL) has become a reality with the advent of advanced computational processors and machine learning (ML) architecture. Unlike static regression analyses that provide a momentary prediction, ML algorithms are dynamic in that they are readily capable of imbibing historical data to build a framework that improves with additive data. Purpose: To (1) characterize the epidemiology of publicly reported NHL injuries from 2007 to 2017, (2) determine the validity of a machine learning model in predicting next-season injury risk for both goalies and position players, and (3) compare the performance of modern ML algorithms versus logistic regression (LR) analyses. Study Design: Descriptive epidemiology study. Methods: Professional NHL player data were compiled for the years 2007 to 2017 from 2 publicly reported databases in the absence of an official NHL-approved database. Attributes acquired from each NHL player from each professional year included age, 85 performance metrics, and injury history. A total of 5 ML algorithms were created for both position player and goalie data: random forest, K Nearest Neighbors, Naïve Bayes, XGBoost, and Top 3 Ensemble. LR was also performed for both position player and goalie data. Area under the receiver operating characteristic curve (AUC) primarily determined validation. Results: Player data were generated from 2109 position players and 213 goalies. For models predicting next-season injury risk for position players, XGBoost performed the best with an AUC of 0.948, compared with an AUC of 0.937 for LR ( P < .0001). For models predicting next-season injury risk for goalies, XGBoost had the highest AUC with 0.956, compared with an AUC of 0.947 for LR ( P < .0001). Conclusion: Advanced ML models such as XGBoost outperformed LR and demonstrated good to excellent capability of predicting whether a publicly reportable injury is likely to occur the next season.

Publisher

SAGE Publications

Subject

Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3