Clinical Factors That Predict a Second ACL Injury After ACL Reconstruction and Return to Sport: Preliminary Development of a Clinical Decision Algorithm

Author:

Paterno Mark V.12,Huang Bin3,Thomas Staci2,Hewett Timothy E.4,Schmitt Laura C.5

Affiliation:

1. Division of Occupational Therapy and Physical Therapy, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.

2. Division of Sports Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.

3. Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.

4. Mayo Clinic Biomechanics Laboratories and Sports Medicine Research Center, Departments of Orthopedic Surgery, Physical Medicine and Rehabilitation, and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA.

5. Division of Physical Therapy, School of Health and Rehabilitation Sciences, Ohio State University, Columbus, Ohio, USA.

Abstract

Background: Biomechanical predictors of a second anterior cruciate ligament (ACL) injury after ACL reconstruction (ACLR) and return to sport (RTS) have been identified; however, these measures may not be feasible in a standard clinical environment. Purpose/Hypothesis: The purpose of this study was to evaluate whether standard clinical measures predicted the risk of second ACL injuries. The hypothesis tested was that a combination of strength, function, and patient-reported measures at the time of RTS would predict the risk of second ACL injuries with high sensitivity and specificity. Study Design: Case-control study; Level of evidence, 3 and Cohort study (prognosis); Level of evidence, 1. Methods: A total of 163 participants (mean age, 16.7 ± 3.0 years) who underwent primary ACLR and were able to RTS were evaluated. All participants completed an assessment of isokinetic strength, hop testing, balance, and the Knee Injury and Osteoarthritis Outcome Score (KOOS). Participants were tracked for a minimum of 24 months to identify occurrences of a second ACL injury. The initial 120 participants enrolled were used to develop a clinical prediction model that utilized classification and regression tree (CART) analysis, and the remaining 43 participants enrolled were used as a validation dataset. Additional analyses were performed in all 163 participants using Kaplan-Meier analysis and Cox proportional hazards modeling. Results: Approximately 20% (23/114) of the initial subset of the cohort suffered a second ACL injury. CART analysis identified age, sex, knee-related confidence, and performance on the triple hop for distance at the time of RTS as the primary predictors of a second ACL injury. Using these variables, a model was generated from which high-risk (n = 53) and low-risk groups (n = 61) were identified. A total of 22 participants in the high-risk group and 1 participant in the low-risk group suffered a second ACL injury. High-risk participants fit 1 of 2 profiles: (1) age <19 years, triple hop for distance between 1.34 and 1.90 times body height, and triple hop for distance limb symmetry index (LSI) <98.5% (n = 43) or (2) age <19 years, triple hop for distance >1.34 times body height, triple hop for distance LSI >98.5%, female sex, and high knee-related confidence (n = 10). The validation step identified the high-risk group as being 5 times (odds ratio, 5.14 [95% CI, 1.00-26.46]) more likely to suffer a second ACL injury, with a sensitivity of 66.7% and specificity of 72.0%. Conclusion: These findings recognize measures that accurately identify young patients at high risk of sustaining a second ACL injury within 24 months after RTS. The development of a clinical decision algorithm to identify high-risk patients, inclusive of clinically feasible variables such as age, sex, confidence, and performance on the triple hop for distance, can serve as a foundation to re-evaluate appropriate discharge criteria for RTS.

Publisher

SAGE Publications

Subject

Orthopedics and Sports Medicine

Cited by 139 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3