Elongation Patterns of the Superficial Medial Collateral Ligament and the Posterior Oblique Ligament: A 3-Dimensional, Weightbearing Computed Tomography Simulation

Author:

Hodel Sandro1,Hasler Julian1,Fürnstahl Philipp2,Fucentese Sandro F.1,Vlachopoulos Lazaros1

Affiliation:

1. Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.

2. Research in Orthopedic Computer Science (ROCS), Balgrist University Hospital, University of Zurich, Zurich, Switzerland.

Abstract

Background: Although length change patterns of the medial knee structures have been reported, either the weightbearing state was not considered or quantitative radiographic landmarks that allow the identification of the insertion sites were not reported. Purpose: To (1) analyze the length changes of the superficial medial collateral ligament (sMCL) and posterior oblique ligament (POL) under weightbearing conditions and (2) to identify the femoral sMCL insertion site that demonstrates the smallest length changes during knee flexion and report quantitative radiographic landmarks. Study Design: Descriptive laboratory study. Methods: The authors performed a 3-dimensional (3D) analysis of 10 healthy knees from 0° to 120° of knee flexion using weightbearing computed tomography (CT) scans. Ligament length changes of the sMCL and POL during knee flexion were analyzed using an automatic string generation algorithm. The most isometric femoral insertion of the sMCL that demonstrated the smallest length changes throughout the full range of motion (ROM) was identified. Radiographic landmarks were reported on an isometric grid defined by a true lateral view of the 3D CT model and transferred to a digitally reconstructed radiograph. Results: The sMCL demonstrated small ligament length changes, and the POL demonstrated substantial shortening during knee flexion ( P = .005). Shortening of the POL started from 30° of flexion. The most isometric femoral sMCL insertion was located 0.6 ± 1.7 mm posterior and 0.8 ± 1.2 mm inferior to the center of the sMCL insertion and prevented ligament length changes >5% during knee flexion in all participants. The insertion was located 47.8% ± 2.7% from the anterior femoral cortex and 46.3% ± 1.9% from the joint line on a true lateral 3D CT view. Conclusion: The POL demonstrated substantial shortening starting from 30° of knee flexion and requires tightening near full extension to avoid overconstraint. Femoral sMCL graft placement directly posteroinferior to the center of the anatomical insertion of the sMCL demonstrated the most isometric behavior during knee flexion. Clinical Relevance: The described elongation patterns of the sMCL and POL aid in guiding surgical medial knee reconstruction and preventing graft lengthening and overconstraint of the medial compartment. Repetitive graft lengthening is associated with graft failure, and overconstraint leads to increased compartment pressure, cartilage degeneration, and restricted ROM.

Publisher

SAGE Publications

Subject

Orthopedics and Sports Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3