Application of Machine Learning Algorithms to Predict Clinically Meaningful Improvement After Arthroscopic Anterior Cruciate Ligament Reconstruction

Author:

Kunze Kyle N.1,Polce Evan M.2,Ranawat Anil S.1,Randsborg Per-Henrik1,Williams Riley J.1,Allen Answorth A.1,Nwachukwu Benedict U.1,Pearle Andrew,Stein Beth S.,Dines David,Kelly Anne,Kelly Bryan,Rose Howard,Maynard Michael,Strickland Sabrina,Coleman Struan,Hannafin Jo,MacGillivray John,Marx Robert,Warren Russell,Rodeo Scott,Fealy Stephen,O’Brien Stephen,Wickiewicz Thomas,Dines Joshua S.,Cordasco Frank,Altcheck David,

Affiliation:

1. Division of Sports Medicine, Department of Orthopedic Surgery, Hospital for Special Surgery, New York, New York, USA.

2. University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.

Abstract

Background: Understanding specific risk profiles for each patient and their propensity to experience clinically meaningful improvement after anterior cruciate ligament reconstruction (ACLR) is important for preoperative patient counseling and management of expectations. Purpose: To develop machine learning algorithms to predict achievement of the minimal clinically important difference (MCID) on the International Knee Documentation Committee (IKDC) score at a minimum 2-year follow-up after ACLR. Study Design: Case-control study; Level of evidence, 3. Methods: An ACLR registry of patients from 27 fellowship-trained sports medicine surgeons at a large academic institution was retrospectively analyzed. Thirty-six variables were tested for predictive value. The study population was randomly partitioned into training and independent testing sets using a 70:30 split. Six machine learning algorithms (stochastic gradient boosting, random forest, neural network, support vector machine, adaptive gradient boosting, and elastic-net penalized logistic regression [ENPLR]) were trained using 10-fold cross-validation 3 times and internally validated on the independent set of patients. Algorithm performance was assessed using discrimination, calibration, Brier score, and decision-curve analysis. Results: A total of 442 patients, of whom 39 (8.8%) did not achieve the MCID, were included. The 5 most predictive features of achieving the MCID were body mass index ≤27.4, grade 0 medial collateral ligament examination (compared with other grades), intratunnel femoral tunnel fixation (compared with suspensory), no history of previous contralateral knee surgery, and achieving full knee extension preoperatively. The ENPLR algorithm had the best relative performance (C-statistic, 0.82; calibration intercept, 0.10; calibration slope, 1.15; Brier score, 0.068), demonstrating excellent predictive ability in the study’s data set. Conclusion: Machine learning, specifically the ENPLR algorithm, demonstrated good performance for predicting a patient’s propensity to achieve the MCID for the IKDC score after ACLR based on preoperative and intraoperative factors. The femoral tunnel fixation method was the only significant intraoperative variable. Range of motion and medial collateral ligament integrity were found to be important physical examination parameters. Increased body mass index and prior contralateral surgery were also significantly predictive of outcome.

Publisher

SAGE Publications

Subject

Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3